
N90-27285

Knowledge Representation h)r Commonality*

Dorian P. Yeager, Ph.D.

Department of Computer Science

The University of Alabama

Tuscaloosa, AL 35487

February 5, 1990

Abstract

Domain-specific knowledge necessary for commonality analysis falls into two general

classes: commonality constraints and costing information. Notations for encoding such

knowledge should be powerful and flexible and should appeal to the domain expert. The

notations employed by the CAPS analysis tool are described herein. Examples are given to

illustrate the main concepts.

1 Introduction

Commonality is the extent to which a system employs common designs to fulfill

similar functions. A system which uses a large number of individually tailored

components for specific functions thus possesses little commonality, whereas a

system which maximizes the number of applications of each component is said to

possess a high degree of commonality. The knowledge which allows an engineer to

decide which components are able to serve in multiple applications, and thereby

to eliminate unnecessary duplication of functionality, is very domain specific.

Commonality knowledge capture is therefore greatly aided by a notation which

appeals to the domain expert and which provides a natural way to describe

commonality considerations.

With Prolog, we are able to communicate this type of information in a way which

is difficult to reproduce with other types of notation. For example, to say that

*Work supported by NASA grants NGT-01-002-099 and NAG8-718.

85

motor A can serve in motor B's stead provided A has at least as high a power

rating as B, we use the following Prolog statement:

can_substitute(g,B) "-

motor(g), motor(B),

power(g,g_power), power(B,B_power),

A_power>=B_po_er

The above Prolog production (rule) states that "A can substitute for B provided

A is a motor, B is a motor, A's power rating is A power, B's power rating is

B power, and A power _> B power". Prolog requires, of course, that the pred-

icates "motor" and "power" be defined. Defining the former requires that we

name each motor with its own symbol, say ml, m2, etc. We then define the

predicate "motor" with a series of declarations as follows.

motor(ml)

motor(m2)

motor(m3)

eic.

The power ratings of the various motors are communicated in a straightforward
fashion, as follows.

power(ml,l.7)

power(m2,3.3)

power(m3,3.3)

efc.

Thus Prolog is a reasonable tool for communicating commonality constraints.

Its drawbacks are many, however. Apart from its strange syntax, Prolog carries

with it the overhead of explicitly declaring predicates like "motor" and "power"

above, and using them in production rules. Also, the unification mechanism of

Prolog (see Clocksin and Mellish [1]) is too costly and too general for this specific

application. The knowledge to be communicated here is more along the lines of

"object A is related to object B" than "statement P is true provided statement Q

is true". A notation is needed which has the power of Prolog but is more familiar

in form and does not carry with it the necessity to embrace a wider domain of

application.

86

2 The CAPS Language

A tool under development for NASA, entitled "Commonality Analysis Problem

Solver", or CAPS, has incorporated into its allowable input forms a notation for

communicating commonality constraints. This notation was designed with the

following objectives in mind: (1) it should be algebraic in nature, resembling the

query languages of relational databases; and (2) it should incorporate enough of

the power of the Prolog language so that the communication of a relationship

between objects is easy and natural.

The nature of the knowledge to be communicated here requires that two objects

be described for the purpose of relating one to the other. Therefore it is conve-

nient to use two separate algebraic expressions. Bach of these expressions is a

database query which isolates a subset of the set of objects under consideration.

The two general forms are as follows:

for < ezpvessionl > allow < ezpression2>

for < ezpvessionl > disallow < ezpression2 >

The above notation either "allows" or "disallows" the substitution of objects sat-

isfying <ezpression_> for objects satisfying <ezpressionl>. Thns for a database

containing information on wrenches, the statement

for millimeters=10 allow inches=13/32

might be used to permit the cost analysis phase of CAPS to consider using a

13/32 inch wrench in place of a 10 millimeter wrench.

What CAPS borrows from Prolog is its view of free variables and the compari-

son/assignment operator. In Prolog, the "=" symbol is used both for comparison

and for assignment. If both sides of the equality can be evaluated, then a true or

false value will be returned in the usual way. However, if one side of the equality

is a free variable, i.e. a variable which has not been bound to a value during the

current firing of the current production, then the other side's value is bound to

it and a value of "true" returned. Using the same hypothetical wrench database

as above, consider the following statement.

for millJ.meters=x allow inches>=O.O394*x and inches<=O.O42*x

In this example, a larger set of wrenches is considered. The expression

87

millimeters=x

refers to the entire database, since x is a free variable and hence can be bound

to any one of the values of the "millimeters" attribute. The key here is that

once x is bound in that first expression to a specific value applicable to a specific

wrench, the remainder of the wrenches in the database are then examined to see

if any of them satisfy the expression

inches>=O.O394*x and inches<=O.O42*x

As before, any which do are accepted as substitutes for the wrench in question.

The same process is repeated for each wrench in the database.

Unlike Prolog, which is case-sensitive and dictates that all variables begin with

a capital letter, CAPS is not case-sensitive and allows any identifier not already

bound to an attribute name, a keyword, or a value to be used as a free variable.

3 Semantic Issues

A database query is a single boolean expression which identifies a subset of the

elements in the database. It is a declarative statement about the properties of

the members of that subset. For example, with a relational database it would be

possible to fetch the entire set of wrenches for which

inches > 5/16 and inches <= 7/8

One could be sure then that in the subset fetched all wrenches would have the

stated property. The semantics of a CAPS "for" statement are not so simple,

however. Each "for" statement, instead of being a declarative definition of a

relation on a set of objects, is a command used to modify such a relation. The

relation in question is the substitutability relation on a set of objects. During its

analysis of a given database, CAPS initially assumes that there are no allowable

substitutions except the trivial ones, in which each object "substitutes" for itself.

As each "for" statement is fired, the relation is altered to achieve a cumulative

effect. We say that the CAPS notation is "history sensitive" in that the effect

of each "for" statement depends not only on the statement itself but also on the

internal state of CAPS, and that internal state is a function of all prior CAPS
commands.

88

The usefulness of this aspect of CAPS can be seen in the following example,

involving a database containing information on storage tanks.

for volume=x allow volume>=x

for liquid disallow gas

for gas disallow liquid

The net effect of firing the three "for" statements in the sequence indicated is to

allow larger tanks to substitute for smaller ones, but not to allow the substitution

of tanks designed to hold liquids for those designed to hold gasses, or vice versa.

Another semantic issue is that of binding times. The binding of a free variable

takes place many times during the execution of a single "for" statement. For this

reason CAPS must incorporate a very/lexible strategy for binding variables to

values. To illustrate, consider the "define" statement, with syntax as follows:

define <identifier> as < ezpression>

Here the identifier is associated with an unevaluated expression. If free variables

appear in that expression, they will take on whatever values are current when the

identifier is used in some subsequent computation, such as the firing of a "for"

statement. In the same way, if there are field names in the expression, they will

take on the appropriate values each time the identifier is referenced. Consider,

for example, the sequence of CAPS commands that follows.

define rel_power as power/weight

for rel_power=x allow rel_power>=x

Here "tel power" is defined as the ratio of power to weight. Since these are

both field names, it makes no sense to evaluate rel power at the point where

it is defined. Rather, the expression "power/weight" is stored internally and

evaluated each time it is needed. In the example, if there are n items in the

database, the expresion is evaluated n 3 times to fire the "for" statement. The

wastefulness of this approach is clear, since there are in fact only n possible

values for "tel power". To avoid the extra complexity, CAPS allows its user to

add "rel power" as a new field in the database. The statement

add tel_power

89

accomplishes this, provided "rel power" has already been defined as above.

To further illustrate, we use a variant of a type of commonality analysis problem

originally formulated by Thomas ([3]). Consider a database containing informa-
tion on utility interface plates. Each interface plate consists of a set of connec-

tions for utilities. The presence or absence of a given connection is represented

by a TRUE or FALSE value in a boolean field. For example, a database entity

having a TRUE value in its "potable water" field represents an interface plate

incorporating a potable water connection. The following set of CAPS statements

enforces the constraint that no interface plate may substitute for another unless

the substituting plate has at least those interfaces which are present on the plate
for which it substitutes.

allow all

for

for

for

for

for

for

for

for

for

for

avionics_air disallow not avionics_air

nominal_power disallow not nominal_power

high_power disallow not high_power

fire_detection disallow not fire_detection

data_management disallow not data_management

thermal_control disallow not thermal_control

hygiene_water disallow not hygiene_water

nitrogen disallow not nitrogen

potable_water disallow not potable_water

hygiene_waste disallow not hygiene_waste

The first statement, "allow all", initially permits all substitutions. The sub-

sequent statements restrict the substitutability relation until it satisfies the re-

quirement. A cost analysis undertaken at this point will consider the elimination

of any interface plate design which incorporates a set of interfaces which is a

subset of those offered by some other design. Whether or not CAPS actually

recommends the elimination of such a design depends on the cost information

conveyed to it.

4 Communicating Cost Information to CAPS

CAPS has two separate mechanisms for determining costs. One of those is the

default costing mechanism, derived from the cost functions used in NASA's Sys-

tem Commonality Analysis Tool (SCAT) (see [2] and [5]). It consists of a set

of relatively fast compiled-in cost functions. These fimctions are fairly standard

and will not be discussed here. It is the data-dependent nature of costs that is

of interest in the context of knowledge representation, and in recognition of that

9O

fact CAPS incorporates a facility for describing highly tailored domain-specific
cost information.

The feature of CAPS which facilitates the tailoring of cost information is the

same defined variable feature discussed above, along with a set of predefined

functions which have meaning only in the context of a cost analysis. A CAPS

cost analysis has the task of grouping the elements of a database into subsets

which are componenf.s of a partition. A partition of the database into such

subsets amounts to a proposed solution to a commonality analysis problem. Each

such subset has a distinguished representative which is proposed as a substitute

for each of the other objects represented in the subset. During a typical CAPS

cost analysis, many such subsets and representatives will be considered. The cost

function employed by CAPS, whether it is a default cost function or user-defined,

allows CAPS to attach a cost to each (subset, representative) pair. Since there

is a need to identify costs associated with an entire component, rather than a

single entity within the database, special-purpose functions must be employed.

Following are a few such functions:

cmax(<field name>)

cmin(<field name>)

csnm(<field name>)

csize

Maximum over all values of the

given field within the component.
Minimum over all values of the

given field within the component.

Sum of all values of the given

field within the component.

Number of objects in this component.

Consider, for instance, the following user-defined cost function:

de_ine linear_cost as ddt&e + csum(quantity)*unitcost

In this example, (1) "ddt&e" represents the design, development, test and engi-

neering costs associated with the object, (2) "quantity" represents the number

of copies of the object which must be produced, and (3) "unitcost" represents

the marginal cost of producing each item, assuming no learning curve is used)
All three are field names. To make CAPS switch from its default cost filnction

to this user-defined function, we use the following statement:

use linear_cost

I CAP$' default cost functions are capable of incorporating a learning curve, and facilities arc provided for

building n learnlng curve component into a user-defined cost function as well.

91

During the analysis of the cost of a given component, the fields "ddt&e" and

"unitcost" will apply only to the chosen representative, whereas "quantity" will

range over the entire component, since it is used as an argument to "csum".

As a final example, consider the interface plates database discussed in the fore-

going section. In that example, the substitutability relation was designed so that

plate A was allowed to substitute for plate B if B's set of interfaces was a subset

of the set of interfaces on plate A. This assumption precludes the possibility of

altering plate A in such a way that it incorporates additional interfaces in or-

der to take on the functionality of plate B, or of manufacturing a new interface

plate incoroporating all interfaces present on both plates. If that approach is

taken, it is no longer necessary to restrict substitutability so strictly. We simply

adjust our concept of what it means for one plate to "substitute" for another.

Regardless of which plate is chosen as the "representative" of a given component,

it is assumed that a plate will be produced which incorporates the entire set of

interfaces present on all plates in that component. We need, of course, a way of

measuring the cost of producing such a plate. The following sequence of GAPS

statements defines a cost function which is compatible with this strategy.

define combined_interfaces as

cmax(avionics_air) + cmax(nominal_power)

cmax(high_pover) + cmax(fire_detection)

cmax(data_management) + cmax(thermal_control)

cmax(hygiene_water) + cmax(nitrogen) +

cmax(potable_water) + cmax(hygiene_waste)

define new_plate_cost as ddt&e +

csum(quantity) * combined_interfaces

use new_pXate_cost

+

-4-

+

What makes the formula work is the fact that boolean attributes are assumed to

have numerical values: 0 for false and 1 for true. Thus "cmax(avionics air)" has
the value 1 if any of the interface plates in the component under consideration

has an avionics air cooling interface. The parenthesized sum therefore amounts

to a count of interfaces which would need to be present in any plate used as a

substitute for all those present in the current component. Weighting factors can

easily be added to the various terms to provide a more realistic estimate of the
cost.

We can restrict the total number of interfaces on a given plate to a fixed number,

say 7, using a "choke term" which causes the cost function's value to become

unacceptably large should the program attempt to combine a set of plates which

would require as its substitute a plate having more than that number of interfaces.

Such a choke term appears in the following example, where the cost function is

92

identical to the above except for the addition of the choke term.

define choked_plate_cost as ddt&e +

csum(quantity) * combined_interfaces +

1.0E9*(combined_interfaces>?)

use choked_plate_cost

In this scenario, we no longer need to restrict substitutability in any way. A

simple "allow all", then, would suffice to communicate to CAPS the lack of any

constraints. That would not be the most prudent way to enter the cost analysis,

however, because fewer constraints typically mean a more lengthy analysis. A

natural way to constrain substitutability is to always choose the plate with the

larger number of interfaces. This can be done as follows.

define number_of_interfaces as avionics_air + nominal_power +

high_power + fire_detection + data_management +

thermal_control + hygiene_water ÷ nitrogen +

potable_water + hygiene_waste

for number of interfaces=x allow number_of_interfaces>=x

After the above constraint is imposed, the solution proposed by CAPS will always

use as a representative for each component the interface plate needing the fewest

additional interfaces in order to serve as a replacement for all other plates in that

component.

5 Conclusion

CAPS incorporates into its design notations and operations uniquely suited for

describing commonality constraints and cost information in preparation for a

comparative cost analysis. The notations are intuitive and easily understood,

yet powerful enough to make CAPS applicable to a broad range of commonality

analysis problems. For more complete information on the CAPS tool, see [4] or

contact the author for more recent documentation. Generalizations of the CAPS

notation to more general database applications are presented in [6].

93

References

1.

.

o

.

.

.

Clocksin, W. F. and Mellish, C. S. "Programming in Prolog". New York,

Springer- Verlag, 1981.

Marshall Space Flight Center. Commonality Analysis Study, User Manual

for the System Commonality Analysis Tool (SCAT), D483-10064, March
1987.

Thomas, L. D. "A Methodology for Commonality Analysis, with Applica-

tions to Selected Space Station Systems". Dissertation, The University of

Alabama in Huntsville, Huntsville, AL, 1988.

Yeager, D. P. "Development of a Prototype Commonality Analysis Tool for

use in Space Programs". Section XXXI of NASA Contractor Report CR-

183553, Research Reports - 1988 NASA/ASEE Summer Faculty Fellowship

Program. George C. Marshall Space Flight Center, 1988.

Yeager, D. P. "A Formalization of the Commonality Analysis Problem and

Some Partial Solutions", BER Report Number 454-69, The University of

Alabama, February 1989.

Yeager, D. P. "A History-Sensitive Approach to the Description of Binary

Relations", Structured Programming, vol. 10, no. 3, pp. 157-163.

94

